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Abstract

The resting brain dynamics self-organize into a finite number of correlated patterns known as resting-state net-
works (RSNs). It is well known that techniques such as independent component analysis can separate the brain
activity at rest to provide such RSNs, but the specific pattern of interaction between RSNs is not yet fully under-
stood. To this aim, we propose here a novel method to compute the information flow (IF) between different RSNs
from resting-state magnetic resonance imaging. After hemodynamic response function blind deconvolution of all
voxel signals, and under the hypothesis that RSNs define regions of interest, our method first uses principal com-
ponent analysis to reduce dimensionality in each RSN to next compute IF (estimated here in terms of transfer
entropy) between the different RSNs by systematically increasing k (the number of principal components
used in the calculation). When k = 1, this method is equivalent to computing IF using the average of all voxel
activities in each RSN. For k ‡ 1, our method calculates the k multivariate IF between the different RSNs. We
find that the average IF among RSNs is dimension dependent, increasing from k = 1 (i.e., the average voxel ac-
tivity) up to a maximum occurring at k = 5 and to finally decay to zero for k ‡ 10. This suggests that a small num-
ber of components (close to five) is sufficient to describe the IF pattern between RSNs. Our method—addressing
differences in IF between RSNs for any generic data—can be used for group comparison in health or disease. To
illustrate this, we have calculated the inter-RSN IF in a data set of Alzheimer’s disease (AD) to find that the most
significant differences between AD and controls occurred for k = 2, in addition to AD showing increased IF w.r.t.
controls. The spatial localization of the k = 2 component, within RSNs, allows the characterization of IF differ-
ences between AD and controls.
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Introduction

The overall brain dynamics generated at rest can be
decomposed as a superposition of multiple activation pat-

terns, the so-called resting-state networks (RSNs). Being a

fundamental characteristic of brain function, RSNs are a piv-
otal element for understanding the dynamics and organization
of the brain basal activity in health and disease (Fox et al.,
2005; Raichle, 2009; Raichle and Mintum, 2006; Raichle
and Snyder, 2007; Raichle et al., 2001). RSNs emerge from
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the correlation in signal fluctuations across brain regions dur-
ing the resting state, a condition defined by the absence of goal-
directed behavior or salient stimuli. Despite the simplicity of
the context in which these brain activity patterns are generated,
RSN dynamics is rich and complex. Different RSNs have been
associated with specific cognitive networks, for example, there
are visual networks, sensorimotor networks, auditory net-
works, default mode networks (DMNs), executive control net-
works, and some others [for further details, see for instance
Beckmann et al. (2005) and references therein].

Currently, it is well established that a number of tech-
niques, such as region-of-interest (ROI) approach (seed-
based), independent component analysis (ICA), and partial
least squares, can decompose the resting-state functional
magnetic resonance images (rs-fMRI) to provide such RSNs
(Bell and Sejnowski, 1995; Beckmann and Smith, 2004;
Beckmann et al., 2005; McIntosh and Lobaugh, 2004;
Zhang and Raichle, 2010). Using these techniques, altered
functional connectivity in specific RSNs has been described
in brain pathological conditions, such as in patients with def-
icit of consciousness after traumatic brain injury (Boveroux
et al., 2010; Heine et al., 2012; Maki-Marttunen et al., 2013;
Noirhomme et al., 2010), schizophrenia (Karbasforoushan
and Woodward, 2012; Woodward et al., 2011), and epilepsy
(Liao et al., 2010). In the particular case of Alzheimer’s dis-
ease (AD), the pathology we have addressed here, starting
from the pioneer contribution showing alterations in fMRI
(Li et al., 2002), thereon a decrease of functional connectivity
in the DMN (an RSN-related memory function) and in the sa-
lience network at both early and advanced stages of the AD
(Binnewijzend et al., 2012; Greicius et al., 2004; Rombouts
et al., 2005; Sheline and Raichle, 2013) has been reported.

Despite this emphasis on specific networks, it is important
to realize, however, that the functional division of RSN into
separate systems does not imply that the brain activity com-
prises functional networks working in isolation (Damoiseaux
et al., 2006). Contrarily, the brain regions underlying the
inter-RSN relationships have their independent organization
and have a different function to the specific one that each in-
dividual RSN has [for recent reviews, see Fornito et al.
(2013) and Smith et al. (2013)]. These interactions between
brain regions belonging to different RSNs have been de-
scribed by means of whole-brain connectivity analysis tech-
niques such as graph analysis (Bullmore and Sporns, 2009;
Reijneveldand et al., 2007; Sporns et al., 2004; Stam and
Reijneveld, 2007), and more recently, connectivity was
also analyzed during different cognitive tasks conditions
(McLaren et al., 2014).

However, the analysis and interpretation of information
flow (IF) between the RSNs remain an open question and
have given rise to two contrasting theories attempting to in-
terpret the resting brain activity. The functional integration
theory [for review, see Zhang and Raichle (2010)] proposes
that brain activity during the resting state requires the coor-
dinated activity of all brain RSNs to support the reconstruc-
tion, analysis, and simulation of experiences or possible
scenarios to provide adaptive behavioral advantage. On the
other hand, the functional segregation theory states that
modality-specific mental activity (e.g., image- or language-
based thoughts) is related to functional disconnection
between the brain networks active during rest (Delamillieure
et al., 2010). Therefore, resting activity would be maintained

by functionally segregated inner-oriented and sensory-
related cognition and the respective intrinsic and extrinsic
brain networks they depend on.

The question of how different RSNs speak to each other is
particularly relevant as it has reported the existence of
disease-driven changes in functional connectivity between
different brain networks (Sanz-Arigita et al., 2010; Schoonheim
et al., 2013). Importantly, as the disease progresses, respon-
sible RSNs are in turn affected, and this gradual loss of func-
tional connectivity within networks is accompanied by a loss
of functional correlation between them (Brier et al., 2012).
This indicates that altered functional activity induced by a
local dysfunction might influence the functioning of ad-
ditional brain regions, leading to the spread of changes in
brain activity beyond the network originally affected
and, in turn, the whole-brain functional connectivity pattern
(Sanz-Arigita et al., 2010).

In this study, we propose a new method to study RSN in-
tercommunication. The method is based on the inference of
IF in terms of transfer entropy (TE) to study directed func-
tional connectivity (DFC) between RSNs.1 We apply this
method to AD (with the aim of showing one potential appli-
cation, but the method is general and can be applied to any
other disease). The first step is to consider RSNs to function
as spatial templates, that is, masks, similar to the ones
reported in Beckmann et al. (2005). Similar approaches, con-
sidering the RSN masks rather than the independent compo-
nents per se, have been used before in previous work
(Carhart-Harris et al., 2014; Haimovici et al., 2013; Tagliazuc-
chi et al., 2012, 2014). Next, we extracted all the time series of
rs-fMRI activity belonging to each RSN. After hemodynamic
response function (HRF) blind deconvolution of all activity
signals, our method does not work out with the average of
all voxel activities per RSN, rather it approximates the global
RSN activity by a k-component signal obtained by principal
component analysis (PCA). The IF between regions is thus
evaluated as the number of components of k is varied, while
the complexity of the model is controlled by statistical testing.
The standard TE analysis is recovered when (i) no HRF
deconvolution is made and (ii) just the first principal compo-
nent is used to describe each RSN (which is equivalent to the
average over voxels within that RSN).

To show one potential application of this method, we
apply it to a data set of AD patients from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) and compared the
results of inter-RSN communication with a group of healthy
subjects.

1For brain connectivity studies, there exist different approaches
for DFC (Barnett et al., 2009; Bressler and Seth, 2011; Friston,
2009, 2011; Friston et al., 2003; Granger, 1969; Marinazzo et al.,
2011; Penny et al., 2004; Roebroeck et al., 2005; Schreiber, 2000).
One possibility for calculating DFC from fMRI time series is
dynamic causal modeling, addressing how the activity in one brain
area is affected by the activity in another area using explicit
models of effective connectivity [for details, see for instance
Friston et al. (2003) and Penny et al. (2004)]. Alternatively, data-
driven approaches for DFC that work directly with the time series,
and not any further assumption, have to be taken, neither about the
hemodynamic response nor about the biophysics from individual
neuron to BOLD level. Two popular data-driven methods for
calculating DFC are GC (Granger, 1969) and TE (Schreiber,
2000); for the Gaussian approximation, the two methods are
equivalent (Barnett et al., 2009).
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Materials and Methods

Alzheimer’s Disease Neuroimaging Initiative

Data used in the preparation of this article were obtained
from the ADNI database (adni.loni.ucla.edu). ADNI was
launched in 2003 by the National Institute on Aging (NIA),
the National Institute of Biomedical Imaging and Bioengin-
eering (NIBIB), the Food and Drug Administration (FDA),
private pharmaceutical companies, and nonprofit organiza-
tions as a $60 million, 5-year public–private partnership.
The primary goal of ADNI has been to test whether serial
MRI, positron emission tomography, other biological mark-
ers, and clinical and neuropsychological assessment can
be combined to measure the progression of mild cognitive
impairment (MCI) and early AD. Determination of sensi-
tive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new
treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials.

The principal investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center, University of California,
San Francisco. ADNI is the result of efforts of many coinves-
tigators from a broad range of academic institutions and pri-
vate corporations, and subjects have been recruited from
over 50 sites across the United States and Canada. The initial
goal of ADNI was to recruit 800 subjects, but ADNI has been
followed by ADNI-GO and ADNI-2. To date, these three
protocols have recruited over 1500 adults, aged 55–90, to
participate in the research, consisting of cognitively normal
older individuals, people with early or late MCI, and people
with early AD. The follow-up duration of each group is spec-
ified in the protocols for ADNI-1, ADNI-2, and ADNI-GO.
Subjects originally recruited for ADNI-1 and ADNI-GO
had the option to be followed in ADNI-2. For up-to-date in-
formation, see www.adni-info.org.

Subjects

The analysis was performed on n = 10 healthy subjects as con-
trol (5 males, 5 females, 73.70– 1.16 years old) and n = 10 AD
patients (5 males, 5 females, 73.40– 1.08 years old) and both
data sets were downloaded from the ADNI database.

Notice that rather than increasing the population size to a
very large number, we preferred to select two small popula-
tions, choosing the most balanced as possible with regard to
age and gender. Demographic data (including the ADNI
identifier) are given in Tables 1 and 2.

MRI acquisition and preprocessing

High-resolution anatomical scans and T2-weighted rs-
fMRI data were used from each subject. For the fMRI
data, a total of 140 volumes were acquired with a repetition
time (TR) of 3000 msec and 64 · 64 matrix with 48 oblique
axial slices (voxel size: 3.3125 · 3.3125 · 3.3125 mm). The
fMRI preprocessing was performed using FSL (FMRIB Soft-
ware Library v5.0) and AFNI (Cox, 1996). Data were motion
corrected and smoothened using a Gaussian Kernel of 6-mm
full width at half maximum. After intensity normalization, a
low-pass filter was applied within the slow fluctuations range
(0.01–0.1 Hz) that characterizes the resting-state blood oxy-
gen level-dependent (BOLD) activity. Next, linear and qua-
dratic trends were removed. Finally, motion time courses,
white matter signal, cerebrospinal fluid signal, and global
signal were regressed out from the data.

ROI definition from RSN masks

We defined each ROI as the voxels belonging to each RSN
by using the masks reported in Beckmann et al. (2005).
These masks can be downloaded from www.fmrib.ox.ac
.uk/analysis/royalsoc8/. Notice that we are not dealing with
the independent components per se, but with the multivariate
activity of all the voxel time series localized within the masks.
Specifically, we have used the following eight RSNs: medial
visual, lateral visual, auditory, sensorimotor, default mode,
executive control, dorsal visual right, and dorsal visual left.
fMRI data were transformed to the MNI152 template (at
3 · 3 · 3 mm resolution) and all the time series from the voxels
belonging to each RSN where extracted to define each ROI.
The size for each ROI is given in Table 3.

Table 1. Alzheimer’s Disease Patients

ADNI ID Sex Age

002 S 5018 M 73
006 S 4867 M 75
018 S 4696 F 73
018 S 5074 F 75
100 S 5106 M 74
130 S 4641 F 74
130 S 4984 F 73
130 S 5059 M 73
136 S 4993 F 72
006 S 4546 M 72

ADNI, Alzheimer’s Disease Neuroimaging Initiative.

Table 2. Healthy Subjects

ADNI ID Sex Age

006 S 4485 M 73
006 S 4150 M 75
002 S 4262 F 73
002 S 4270 F 75
012 S 4026 M 74
002 S 4264 F 74
018 S 4349 F 73
018 S 4400 M 72
031 S 4032 F 72
002 S 4225 M 72

Table 3. Resting-State Network Mask Size

RSN name Number of voxels

Medial visual 5649
Lateral visual 8470
Auditory 10,894
Sensorimotor 7668
Default mode 8201
Executive control 15,209
Dorsal visual right 12,197
Dorsal visual left 10,524

RSN, resting-state network.
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HRF blind deconvolution

We individuated point processes corresponding to signal
fluctuations with a given signature and extracted a voxel-spe-
cific HRF to be used for deconvolution after following an
alignment procedure. The parameters for blind deconvolution
were chosen with a physiological meaning, according to Wu
et al. (2013): for a TR equal to 3 sec, the threshold was fixed
at 1 SD (standard deviation) and the maximum time lag varied
from 3 to 5 TR, but results did not change. Results in the article
have been observed for a maximum time lag equal to 5 TR. For
further details on the complete HRF blind deconvolution
method and the different parameters to be used, see Wu
et al. (2013). The resulting time series after the HRF blind
deconvolution are the ones used for the calculation of the IF.

IF between RSNs

Let us consider two RSNs, A and B. We use TE to estimate
IF from A to B, and vice versa; TE is equivalent to Granger
causality (GC) in the Gaussian case (Barnett et al., 2009),
which is the case considered here. Let A be described by
the NA continuous time series fxA

a (t)ga = 1, ..., NA
(i.e., set of

voxels belonging to region A) and B be described by the
NB continuous time series fxB

a (t)ga = 1, ..., NB
. All the time se-

ries have been deconvolved by the HRF. Fixing the number
k of the principal components, the same for A and B, we rep-
resent the dynamics for A as fyA

i (t)gi = 1, ..., k and for B as
fyB

i (t)gi = 1, ..., k. Note that these components are statistically

independent in the Gaussian approximation. Given the
order m (the number of past points to be included in the
state vector) and the lag parameter d, we denote the ith com-
ponent of the state vector as follows:

YA
i (t) = yA

i (t� d) � � � yA
i (t� d�m)

� �
, (1)

and the corresponding one for B as follows:

YB
i (t) = yB

i (t� d) � � � yB
i (t� d�m)

� �
: (2)

According to the Akaike information criterion, we use m = 1.
The calculation of IF from A to B depends on the used lag d. In
this study, in addition to lag equal to 1, we also simulated d = 2
(corresponding to 6 sec as TR = 3 sec) and d = 3 (9 sec), show-
ing slightly different behavior. In particular, for both d = 2 and
d = 3, we still found an increase of IF in AD w.r.t. controls, but
that increment was not significant in any number of principal
components (k). Thus, only for d = 1, the case we have consid-
ered here, the increment of IF occurring in AD was statistically
significant (for both k = 2 and k = 3).

To evaluate the IF from A to B, we first calculate the IF
from A to the ith component of B, that is,

t A/Bi
� �

= H(yB
i jfYB

j gj = 1, ..., k)

�H(yB
i jfYB

j gj = 1, ..., k; fYA
j gj = 1, ..., k),

(3)

where H is the conditional Shannon entropy, evaluated over
the empirical distribution of samples at hand under the

Table 4. Localization of Brain Differences in Alzheimer’s Disease Versus Control Using

the Automated Anatomical Labeling Parcellation

RSN
Regions in AD, but not in control

(red in Fig. 5)
Regions in control, but not

in AD (blue in Fig. 5)

Medial visual Calcarine sulcus, cuneus, lingual gyrus Paracentral lobule
Lateral visual Middle occipital gyrus Superior occipital gyrus, middle occipital gyrus
Auditory Thalamus Superior temporal gyrus
Sensorimotor Rolandic operculum, Heschl’s

gyrus, superior temporal gyrus
Precentral

Default mode Medial frontal gyrus, thalamus Midcingulate area, cuneus, angular gyrus
Executive control Supramarginal gyrus Superior frontal gyrus, middle frontal gyrus
Dorsal visual right Inferior parietal lobule, angular gyrus Inferior frontal gyrus pars triangularis, insula
Dorsal visual left Angular gyrus None upper 15% overlapping

AD, Alzheimer’s disease.

FIG. 1. Methodological
sketch. Red (dashed) rectan-
gles indicate key stages in our
approach. Color images
available online at www
.liebertpub.com/brain
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assumption of Gaussianity, see Barnett et al. (2009). Notice
two important issues from Equation (3): first, that the two con-
ditioned states, fYB

j gj = 1, ..., k and fYA
j gj = 1, ..., k, are accounting

for lagged interactions, that is, the two depend on the d param-
eter appearing in Equations (1) and (2), but the term yB

i is not
lagged. Second, that the interaction given by Equation (3) is
univariate for the target and multivariate for the driver.

Next, repeating the same as in Equation (3) for each of the
components in B, that is, i = 1,.,k, and denoting pi as the
probability of t(A/Bi) under the null hypothesis of the ab-
sence of influence, both pi and t(A/Bi) can be calculated
analytically in the Gaussian approximation, cf, in Equation
(12) in the article (Barnett et al., 2009). Finally, IF is then es-
timated as the average over all components in B, that is,

IF(A/B) =
1

k
+k

i = 1
h

s
k
� pi

� �
t(A/Bi), (4)

where h is the Heaviside function that makes the sum to account
for all the contributions, which are statistically significant
according to Bonferroni criterion, that is, those with pi < s/k,
where s is the statistical significance (we use 0.05 here).

The complexity of the model is thus controlled by statis-
tical testing, that is, accepting only significant interactions
[a similar strategy to control complexity is used in Marinazzo
et al. (2008)].

Statistical testing

To perform statistical significance between groups in Fig-
ures 2–4, a nonparametric Wilcoxon rank-sum test was used
to validate the hypothesis that two data distributions have
equal medians. This was implemented in Matlab, The Math-
Works, Inc., with the function, ranksum, at p = 0.05 with Bon-
ferroni correction.

For Figure 5, a nonparametric, two-sample unpaired t-test
was performed as implemented in FSL. First, the k = 2 compo-
nent was regressed into 4D fMRI data of each particular subject
to obtain a subject-specific spatial map. Next, to search for the
group differences (control vs. AD) in the spatial maps, we per-
formed a permutation-based nonparametric inference as imple-
mented in the function randomize in FSL, option threshold-free
cluster enhancement with familywise error-corrected p = 0.05.

Anatomical localization in brain differences:
control versus AD

To localize the spatial maps plotted in Figure 5, we over-
lapped these maps with the automated anatomical labeling
(AAL) atlas (Tzourio-Mazoyer et al., 2002) to get the ana-
tomical regions underlying such differences. In particular,
we calculated the overlapping percentage between all voxels
in each spatial map and each of the 45 homologue brain areas
existing in the AAL parcellation. Although the RSNs are
widespread across the whole brain, our localization criteria
only considered the percentage of voxels in each spatial
map to be bigger than 15% (with respect to the total spatial
map size), results are given in Table 4.

Results

After extracting all voxels belonging to each RSN and
deconvolving each of the individual voxels with HRF (see
the Materials and Methods section), we first applied PCA

to each RSN and then computed the multivariate IF between
RSNs (see Fig. 1 for a chart flow). Regarding the amount of
variability captured by the principal components, after aver-
aging between subjects, about 60% of total variability was
captured by the first 10 components (k = 10) (Supplementary
Fig. S1; Supplementary Data are available online at www
.liebertpub.com/brain) and 99% of total variability was
captured for k = 72 (Supplementary Fig. S2). No statistically
significant differences were found in the amount of vari-
ability between control and AD, indicating that the data
representation in the different principal components was

FIG. 2. Average transferred information between all resting-
state networks (RSNs) as a function of the number of principal
components. Control (top) versus Alzheimer’s disease (AD;
bottom). The pattern of transferred information is the same
for the two conditions; it increases from k = 1 up to the maxi-
mum at k = 5 to start to decrease up to zero information for
k ‡ 10. This means that the k = 5 multivariate information flow
(IF) between the different RSNs is most informative than in
any other dimension. * Represents statistical differences be-
tween control and AD, p = 0.05 (Bonferroni correction). Stand-
ard error (depicted in red) has been calculated across subjects
for each group, control (n = 10) versus AD (n = 10). Information
has been calculated in nats (i.e., Shannon entropies have been
calculated in natural logarithms); however, to transform to in-
formation bits, we have to multiply the value in nats by 1.44.
Color images available online at www.liebertpub.com/brain
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disease independent. Therefore, the reader should not be
confused and be aware that differences in IF are not related to
these percentages.

The average IF between the different RSNs is represented
in Figure 2. Systematically, we recomputed IF with a differ-
ent number of principal components (maintaining the same

for all RSNs) from k = 1 up to k = 15. The case k = 1 is equiv-
alent to calculating IF between the average voxel activities
for each RSN. The case k > 1 corresponds to a multivariate
situation. For visualization purposes, Figure 2 shows results
up to k = 11, and as for k ‡ 10, the information was zero.
Notice that having a zero IF is possible because, according

FIG. 3. Networks of IF between the different RSNs. For k = 2 (occurring as the biggest difference between control and AD
in Fig. 2), we have represented the multivariate IF between the different RSNs. Control (left) versus AD (right) for the two
directions of IF (top and bottom). IF values are proportional to arrow thickness. Values represented in Figure 2 are the average
among all the arrows represented in this figure, taking into account the two flow directions (top and bottom). Only for visu-
alization purposes, values of IF have been normalized to the common maximum (marked with the red arrow), corresponding
to transfer entropy (TE) = 0.078 nats from the executive control network to the medial visual (left) in the AD condition.
Dashed arrow from the sensorimotor network to the medial visual corresponds to the minimum value, which before normal-
ization was TE = 0.006 and after normalization was fixed to zero. Color images available online at www.liebertpub.com/brain
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to Equation (4), the quantity of IF is averaged over all the
components. Thus, if adding a new component does not pro-
vide new independent information, the term (1/k) in the de-
nominator will eventually decrease the average IF. To
represent Figure 2, notice that as we were dealing with
n = 10 healthy subjects and n = 10 AD patients, we first
obtained for each subject a matrix of IFs, in which the ele-
ment (i, j) indicated IF from the ith RSN to the jth one.
Next, we pooled together all the matrices belonging to the
same group (control and AD) and represented the average
IF among all possible pairs—for eight RSNs, the total num-
ber of pairs is 8 · (8�1) = 56, which is equal to the number of
pairs minus the elements in the principal diagonal. The pro-
file of average information as a function of the number of
principal components (used for calculation of the IF) is the
same for control and AD: starting to increase from k = 1 up
to the maximum at k = 5, and then begin to decrease mono-
tonically. Therefore, we conclude that for dimensions bigger
than k = 5, a higher dimension does not provide more IF. Stat-
istically significant differences for the average IF between
control and AD occurred for k = 2 and k = 3. Interestingly,
the average inter-RSN IF is higher in AD than in controls.

Figure 3 shows all possible values of IF between all RSNs.
In this study, the number of principal components was fixed
to k = 2 (the one with biggest statistical difference in Fig. 2),
but similar graphs were obtained for each value of k. Unlike
correlations, TE measures DFC, thus Figure 3 represents, for
each condition control and AD, the two directions in IF (i.e.,
for two generic RSNs, A and B, if in the top panel we repre-
sented IF from A to B, then in the bottom panel, we depicted
IF from B to A). In other words, the average value among all
the flows in Figure 3 is the one plotted in Figure 2. It is im-

portant to remark that all RSNs are communicating with each
other, and, as shown Figure 2, on average, the AD condition
had higher information flowing between RSNs in compari-
son with control.

Next, we addressed IF arriving to and originating from
each specific RSN. Figure 4 shows the outward information
in blue and the inward information in red. The negativity in
all the bars (obtained by subtracting the information in con-
trol minus the corresponding one in AD) confirmed that
within all RSNs there existed an increase of the information
for AD in both the outward and the inward directions.

Finally, we performed a two-sample unpaired t-test to lo-
calize the differences between AD and control for the k = 2
component. Results are shown in Figure 5; the differences
are plotted in two colors: blue for the activity existing in con-
trol, but nonexistent in AD, and in red, vice versa, activated
areas belonging to AD, but not to control. Next, we overlap-
ped these maps with the AAL atlas (details in the Materials
and Methods section) to get the relevant anatomical regions
for each RSN, cf, in Table 4.

Discussion

RSNs are chiefly characterized by their universal emer-
gence, meaning that beyond individual subject differences,
RSNs are ubiquitous in healthy brains. While the emergence
of RSNs in health is a well-known fact, how these RSNs
speak to each other is not fully understood yet. In our approach,
instead of applying ICA to each subject separately to get their
specific RSNs, we used templates provided in Beckmann et al.
(2005) for all subjects. The use of the same templates for all the
subjects is indeed assuming that the spatial structure of all
RSNs is universal. Our main hypothesis here is that the break-
down of this assumption might differentiate healthy subjects
and AD patients—but the same method can be applied to
any other disease—and that searching for such differences
might provide further insights about the alteration patterns of
IF in the pathological brain. In other words, we were interested
in providing an answer to the following question: what are the
different features in healthy versus pathological brains under
the hypothesis that the same templates characterize RSNs?
To this end, we introduced a novel method that calculates IF
between all the different RSNs.

We applied this methodology to AD data sets and com-
pared these results with controls. The interesting answer is
that such an assumption led—for the particular situation of
AD—to differences in the information related to the second
and third principal components and not to the first one (which
is coincident with the average activity over all voxels per
RSN). Notice that from Equations (3) and (4), one can see
that the TE is calculated univariately for the target and multi-
variately for the driver. Thus, when we say that AD versus
control differences are associated with k = 2, we mean a mul-
tivariate driver taking into account the two time series, k = 1
and k = 2. Therefore, as far as the average time series of each
ROI is concerned, no differences between the patterns of
healthy and AD patients emerged. Performing a paired t-test
to spatially localize the k = 2 component, we found the regions
that were underlying those differences.

An important limitation of ROI analysis in MRI data is the
huge number of voxels determining each brain region. In
most cases, the average time series (across voxels at each

FIG. 4. Control minus AD differences in the total IF per
RSN. Outward information (blue) and inward information
(red) from/to each different RSN. Error bars have been calcu-
lated across subjects for each group. Notice that values in this
figure are much higher than those in Figure 2 due to two rea-
sons: first, values in Figure 2 correspond to the average value
of IF, taking off principal diagonal elements, this implied di-
viding each IF value by a factor of 56. Second, because to cal-
culate both outward and inward information, we sum over
columns and rows, respectively, and this meant multiplying
each IF value by a factor of 6 (not including the self-node in-
formation and the element in the principal diagonal). Thus,
values in this figure might be even up to 336 times bigger.
Color images available online at www.liebertpub.com/brain
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time point) or the first principal component is assumed to be
the ROI representative (we verified that the average and the
first principal components are equivalent in our data set); the
connectivity analyses are then carried out using these re-
gional representative signals. However, neither the average
nor the first PCA is taking into account the predictive
power of past value. Thus, relevant temporal information
may be diluted when considering these signals.

Some approaches have represented each ROI using more
than one time series, either by using PCA (Zhou et al.,
2009) or cluster analysis (Sato et al., 2010). The approach
we are presenting here is rooted on principal component
analysis and its novelty is based on two points: first, we pre-
processed the time series corresponding to each individual
voxel by HRF blind deconvolution, and second, instead of
fixing the number of components according to a prescribed
fraction of the data variance, as it is usually done, we have
analyzed IF as the number of component increases, including
more details of the ROI dynamics.

Using the RSN spatial templates (masks) reported in
Beckmann et al. (2005), we extracted different ROIs to ap-

proximate each RSN by a fixed multivariate dimension (k)
found by PCA. Notice that the common approach of taking
the average over all voxel activities belonging to each RSN
corresponds to k = 1. Beyond this, the average interactions
are captured by k ‡ 1. Therefore, our method can be consid-
ered as a generalization for the average activity approach.

Recently, the point process analysis described in Taglia-
zucchi et al. (2012) showed that the relevant information in
resting-state fMRI can be obtained by looking into discrete
events resulting in relatively large amplitude BOLD signal
peaks. Following this idea, we have considered the prepro-
cessed resting fMRI time series to be spontaneous, event re-
lated, and individuated point processes corresponding to
signal fluctuations with a given signature, extracting a
voxel-specific HRF to be used for deconvolution.

We want to remark that the use of the HRF deconvolution,
apart from being conceptually mandatory in our opinion, is
also crucial for our results. Indeed, we repeated our analysis
while omitting the deconvolution stage and found a clear dif-
ferent pattern of IF between RSNs. In particular, IF differ-
ences were only significant for k = 1 and AD showed a

FIG. 5. Brain maps of statistical significance localizing the k = 2 component within each RSN. After a two-sample unpaired
t-test (see the Materials and Methods section), we are representing two possible contrasts: in red, the figure shows the significant
activity existing in AD, but nonexistent in control. In blue, vice versa, differences, which exist in control, but not in AD. Color
images available online at www.liebertpub.com/brain
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decreased IF w.r.t. healthy subjects (Supplementary Fig. S3).
We also verified that in general, the use of HRF deconvolu-
tion increased the IF for all subjects in comparison with no
deconvolution. Thus, if we had omitted the HRF deconvolu-
tion stage, we would have not observed the relevant role of
the second and the third principal components in shaping
the differences of IF in AD and controls.

Previous work has addressed DFC between the different
RSNs; for instance, the authors in Demirci et al. (2009)
ICA extracted the time courses of spatially independent com-
ponents and found differences in DFC between schizophre-
nia and control conditions. It is worth mentioning that a
method for effective connectivity inference, combining PCA
and GC, was proposed in Zhou et al. (2009). The main differ-
ences between our method (tailored to analyze the IF between
RSNs) and the one developed in Zhou et al. (2009) are the
blind deconvolution with HRF and the fact that we use the
number of components as a parameter to be systematically
increased (up to finding statistically significant different cau-
salities) and both driver and target ROIs are described with
the same number of components. In Zhou et al. (2009), in-
stead, all voxels in the activated brain regions were taken
as the target and the PCA analysis was applied only to the
driver region and not to the target one.

Following previous work extending the use of DFC to the
multivariate situation (Barnett et al., 2009; Barrett et al.,
2010; Deshpande et al., 2009; Liao et al., 2011), we have ap-
plied here a multivariate DFC approach to the study of the
interaction between RSNs. Specifically to AD, causal inter-
actions among the different RSNs were addressed in Liu
et al. (2012) by a multivariate GC. The authors found an in-
crease in IF between RSNs in relation to the DMN and the
executive control one, which is in agreement with the in-
crease of IF reported here, possibly suggesting compensatory
processes in the brain networks underlying AD. Similarly
and more recently, an increase of connectivity in the DMN
was found by other authors in Liang et al. (2014) in amnesic
MCI by using GC.

The main result of the present study is the finding that the
AD condition had higher IF between RSNs in comparison
with control. This is apparently in contradiction to a recent
article (Li et al., 2013) where a Bayesian network approach
reported a general decrease in connectivity strength for
AD. Moreover, the authors in Li et al. (2013) found an in-
crease in connectivity between the DMN and the dorsal at-
tention network when using the average voxel activity, and
in our approach, this situation is equivalent to considering
k = 1. In this study, if we apply the HRF deconvolution pre-
processing, we find no significant differences between con-
trols and AD at k = 1, but if no deconvolution is applied,
k = 1 for AD shows a significantly decreased IF w.r.t. healthy
subjects, in full agreement with (Li et al., 2013). Moreover,
for k = 1, we find an increase of the interaction from the DMN
to the dorsal visual (left) network and this is also consistent
with the findings in Li et al. (2013). It follows that the results
in the article (Li et al., 2013) are consistent with the applica-
tion of our method when just one component is considered
and the HRF deconvolution is omitted. Our findings suggest
that in AD, the second (and, to a lesser extent, the third) com-
ponents of the signals within RSNs are responsible for the in-
creased IF. Approximating each RSN by a single signal is not
enough to put in evidence these phenomena.

The IF increase found in AD might have different causes,
perhaps due to a compensatory reorganization of brain cir-
cuits due to synaptic plasticity (Adams, 1991) or due to the
fact that AD patients might fail in ignoring irrelevant inputs
when integrating information to perform particular cognitive
tasks (Rodriguez et al., 1999) or due to the reduction in inhib-
itory modulatory influence across the whole-brain network in
AD (Amieva et al., 2004; Bentley et al., 2008; Rytsar et al.,
2011); however, the exact mechanism producing an increase
of IF in AD needs further investigation.

The small population size included in this study only al-
lows for a limited interpretation of the details of connectivity
changes between networks. However, a conservative ap-
proach to this analysis indicates that the IF implicated in
sensory processing networks and the DMN is relatively in-
creased in AD compared with controls. Both reductions as
well as increments in functional connectivity have been pre-
viously reported between brain regions in early AD. Interest-
ingly, most of the regional connectivity increments have
been described in the frontal regions, overlapping with re-
gions belonging to the executive control network, DMN,
and frontal regions of the dorsal visual processing stream
(Sanz-Arigita et al., 2010).
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